

New ideas in geophysical technology

21st March 2012

The Value of Broadband Seismic for Imaging and Reservoir Geophysics

Eivind Fromyr, Cyrille Reiser and Stephen Pharez, PGS

Outline

• Introduction

- GeoStreamer
 - Impact of the sea surface reflection
 - Dual-sensor technology
 - Experience and data examples
 - Reservoir characterization
- What about the source side GeoStreamer GS
 - Principles
 - Revealing the true earth response
 - Data examples
- Imaging with separated wavefields
- Towed streamer electromagnetics

Amplitude spectrum comparison 10m vs. 25m

Frequency comparison

A Broader Bandwidth without restricting assumptions

Conventional Final Migration

Dual-sensor Raw Migration

PGS Time Slice 2460ms - Conventional

PGS Time Slice 2460ms – Dual-sensor Streamer

PGS Conventional – example subline

PGS Dual-sensor Streamer – example subline

PGS Conventional – shallow data zoom (1)

14

PGS Common issues for the Rock Properties Estimation

• **Bandlimited seismic**: Not enough low frequency for the seismic inversion with conventional streamer

• Filling of the frequency gap by using well and seismic velocity information

• Heavy a priori knowledge can be provided by injecting too much well information into the inversion scheme.

• **Bias estimation** of the elastic properties / Litho-Fluid prediction by the well data and the geometry / locations of them

Seismic comparison Conventional versus GeoStreamer

Seismic comparison Conventional versus GeoStreamer

17 Hz Low Frequency with all the wells

Acoustic Impedance

17 Hz Low Frequency with just 2 wells

Log filtered in the seismic bandwidth

PGS Cross-plot analysis - Well 2 – Ip versus Vp/Vs

Cross-plots analysis between the 2 streamer types:

- Acoustic Impedance domain: Equivalent distribution
- Vp/Vs domain: Significantly less scattering with the Broadband Streamer

=>Increased reliability in the Pre-stack AVO inversion i.e:

- 1 Improved amplitude fidelity in the pre-stack data
- 2 Preserved AVO Amplitude behaviour with the Broadband streamer.

=>Gas sands reservoir interval is better isolated in the Broadband Streamer cross plot analysis compared to the cross-plot of conventional data

Outline

- Introduction
- GeoStreamer
 - Impact of the sea surface reflection
 - Dual-sensor technology
 - Experience and data examples
 - Reservoir characterization
- What about the source side GeoStreamer GS
 - Principles
 - Revealing the true earth response
 - Data examples
- Imaging with separated wavefields
- Towed streamer electromagnetics

PGS GeoSource layout example

9m sub-arrays fired together at time 0 5m sub-array with randomised delay 250 -1000msec

The accuracy of the source separation is within ~1dB throughout the bandwidth after pre-stack migration.

The source ghost removal process itself is a significant contributor to this accuracy.

Same Hardware, Same processing

Conventional

GeoStreamer **GS**[™]

10m sub-arrays fired together with randomised delay 0-1000ms 14m sub-arrays fired together with randomised delay 0-1000ms

Outline

- Introduction
- GeoStreamer
 - Impact of the sea surface reflection
 - Dual-sensor technology
 - Experience and data examples
 - Reservoir characterization
- What about the source side GeoStreamer GS
 - Principles
 - Revealing the true earth response
 - Data examples
- Imaging with separated wavefields
- Towed streamer electromagnetics

2. Apply Imaging Condition: either cross-correlation (stable but does not define reflectivity) or, preferably, smoothed deconvolution (defines the reflectivity)

See paper by Whitmore et al., Paper G005, EAGE 2011

Imaging with separated wavefields from GeoStreamer data PGS

- Using Up and Down going wavefields will lead to radical improvements in
 - sub-surface imaging
 - quality and accuracy improvements for modelling reservoir parameters

Illumination by Primaries

Illumination by Multiples

PGS Depth slices - middle (z = 3000)

Imaging of Primaries

ó × ó

Imaging of Multiples

Outline

- Introduction
- GeoStreamer
 - Impact of the sea surface reflection
 - Dual-sensor technology
 - Experience and data examples
 - Reservoir characterization
- What about the source side GeoStreamer GS
 - Principles
 - Revealing the true earth response
 - Data examples
- Imaging with separated wavefields
- Towed streamer electromagnetics

PGS PGS Towed Streamer Electromagnetics

•PGS will acquire resistivity surveys during 2012 -North Sea for first surveys -Data will be available to license •A new system is being commissioned -Significant upgrades from the prototypes •What is different about "Towed EM" -Acquisition speed between 4 and 5 Kts -Same vessel as seismic acquisition -Possible simultaneous seismic and EM ops. -Dense data coverage -Data analysis in context with seismic data -Initial shallow water focus -Next generation to go deeper

PGS PGS Electromagnetic Streamer Development Timeline

2009 1st Offshore Trial: Proof Of Concept

2010

Offshore Trial: Intermediate Prototype

- < 400m water
- 1km target depth
- Increase source moment-I

- Processing & Modelling Alpha release

2011

Offshore Trial: Proto-type

- -< 400m water
- 2 km target
- Increased source moment-II
- Processing & Modelling Beta Release

2012

Commercial System Commissioning

- Validation tests
- New Source
- 8Km Streamer
- Integrated QC/QA
- First data available before year-end

Resistivity from inversion – Troll Oil Province Delineated

plotted on the top reservoir horizon

Close-up of TWOP rescaled

PGS Capability Analysis Results – First Generation System

